Count Inversions in an array (Using Merge Sort)
METHOD 1 (Simple)
#include <stdio.h>
int getInvCount(int arr[], int n)
{
int inv_count =
0;
for (int i = 0;
i < n - 1; i++)
for (int j =
i+1; j < n; j++)
if (arr[i]
> arr[j])
inv_count++;
return
inv_count;
}
/* Driver program to
test above functions */
int main(int argv, char** args)
{
int arr[] = {1,
20, 6, 4, 5};
int n =
sizeof(arr)/sizeof(arr[0]);
printf("
Number of inversions are %d \n", getInvCount(arr, n));
return 0;
}
Output:
Number of inversions are 5
METHOD 2(Enhance Merge
Sort)
#include <stdio.h>
int
_mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int
right);
/* This function sorts the input array and returns the
number of inversions in
the array */
int mergeSort(int arr[], int array_size)
{
int *temp =
(int *)malloc(sizeof(int)*array_size);
return
_mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
returns the number of
inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int
right)
{
int mid,
inv_count = 0;
if (right >
left)
{
/* Divide the array into
two parts and call _mergeSortAndCountInv()
for each of the parts
*/
mid = (right
+ left)/2;
/* Inversion count will
be sum of inversions in left-part, right-part
and number of
inversions in merging */
inv_count = _mergeSort(arr, temp,
left, mid);
inv_count +=
_mergeSort(arr, temp, mid+1, right);
/*Merge the two parts*/
inv_count +=
merge(arr, temp, left, mid+1, right);
}
return
inv_count;
}
/* This funt merges two sorted arrays and returns inversion count
in
the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int
right)
{
int i, j, k;
int inv_count =
0;
i = left; /* i is index for
left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for
resultant merged subarray*/
while ((i <=
mid - 1) && (j <= right))
{
if (arr[i]
<= arr[j])
{
temp[k++] =
arr[i++];
}
else
{
temp[k++] =
arr[j++];
/*this is tricky -- see above
explanation/diagram for merge()*/
inv_count =
inv_count + (mid - i);
}
}
/* Copy the
remaining elements of left subarray
(if there are any) to
temp*/
while (i <=
mid - 1)
temp[k++] =
arr[i++];
/* Copy the remaining
elements of right subarray
(if there are any) to
temp*/
while (j <=
right)
temp[k++] =
arr[j++];
/*Copy back the merged
elements to original array*/
for (i=left; i
<= right; i++)
arr[i] =
temp[i];
return
inv_count;
}
/* Driver program to test above functions */
int main(int argv, char** args)
{
int arr[] = {1,
20, 6, 4, 5};
printf("
Number of inversions are %d \n", mergeSort(arr, 5));
getchar();
return 0;
}
Output:
Number of inversions are 5
Count Inversions in an array (Using Merge Sort)
Reviewed by Unknown
on
August 25, 2018
Rating:
No comments:
If you have any doubt or query ,comment below: