Count Inversions in an array (Using Merge Sort)


Count Inversions in an array 
(Using Merge Sort)

METHOD 1 (Simple)
#include <stdio.h>
int getInvCount(int arr[], int n)
{
  int inv_count = 0;
  for (int i = 0; i < n - 1; i++)
    for (int j = i+1; j < n; j++)
      if (arr[i] > arr[j])
        inv_count++;
  return inv_count;
}
 /* Driver program to test above functions */
int main(int argv, char** args)
{
  int arr[] = {1, 20, 6, 4, 5};
  int n = sizeof(arr)/sizeof(arr[0]);
  printf(" Number of inversions are %d \n", getInvCount(arr, n));
  return 0;
}
Output:
Number of inversions are 5

METHOD 2(Enhance Merge Sort)
#include <stdio.h>
int  _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);

/* This function sorts the input array and returns the
   number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
    int *temp = (int *)malloc(sizeof(int)*array_size);
    return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
  returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
  int mid, inv_count = 0;
  if (right > left)
  {
    /* Divide the array into two parts and call _mergeSortAndCountInv()
       for each of the parts */
    mid = (right + left)/2;
    /* Inversion count will be sum of inversions in left-part, right-part
      and number of inversions in merging */
    inv_count  = _mergeSort(arr, temp, left, mid);
    inv_count += _mergeSort(arr, temp, mid+1, right);
 /*Merge the two parts*/
    inv_count += merge(arr, temp, left, mid+1, right);
  }
  return inv_count;
}
/* This funt merges two sorted arrays and returns inversion count in
   the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right)
{
  int i, j, k;
  int inv_count = 0;
  i = left; /* i is index for left subarray*/
  j = mid;  /* j is index for right subarray*/
  k = left; /* k is index for resultant merged subarray*/
  while ((i <= mid - 1) && (j <= right))
  {
    if (arr[i] <= arr[j])
    {
      temp[k++] = arr[i++];
    }
    else
    {
      temp[k++] = arr[j++];
     /*this is tricky -- see above explanation/diagram for merge()*/
      inv_count = inv_count + (mid - i);
    }
  }
 /* Copy the remaining elements of left subarray
   (if there are any) to temp*/
  while (i <= mid - 1)
    temp[k++] = arr[i++];
  /* Copy the remaining elements of right subarray
   (if there are any) to temp*/
  while (j <= right)
    temp[k++] = arr[j++];
  /*Copy back the merged elements to original array*/
  for (i=left; i <= right; i++)
    arr[i] = temp[i];
  return inv_count;
}
/* Driver program to test above functions */
int main(int argv, char** args)
{
  int arr[] = {1, 20, 6, 4, 5};
  printf(" Number of inversions are %d \n", mergeSort(arr, 5));
  getchar();
  return 0;
}
Output:
Number of inversions are 5

Count Inversions in an array (Using Merge Sort) Count Inversions in an array  (Using Merge Sort) Reviewed by Unknown on August 25, 2018 Rating: 5

No comments:

If you have any doubt or query ,comment below:

Programming copyright © 2018-19. Powered by Blogger.